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In recent numerical experiments on series arrays of overdamped Josephson junctions, Nichols and
Wiesenfeld [Phys. Rev. A 45, 8430 (1992)] discovered that the periodic states known as splay states are
neutrally stable in all but four directions in phase space. We present a theory that accounts for this
enormous degree of neutral stability. The theory also predicts the four non-neutral Floquet multipliers
to within 0.1% of their numerically computed values. The analytical approach used here may be appli-
cable to other globally coupled systems of oscillators, such as multimode lasers, electronic oscillator cir-

cuits, and solid-state laser arrays.

PACS number(s): 05.45.+b, 74.40.+k, 74.50.+r

I. INTRODUCTION

This paper was inspired by the puzzling results of some
recent numerical experiments on series arrays of over-
damped Josephson junctions. While investigating the
stability of certain collective oscillations known as splay
states, Nichols and Wiesenfeld [1] discovered that these
states are neutrally stable to perturbations in all but four
directions in phase space. Moreover, this huge degree of
neutral stability was found to persist over a wide range of
parameters and for a variety of different loads. The
robustness of the phenomenon is especially surprising,
given that Josephson arrays are dissipative dynamical
systems; normally such systems exhibit neutral stability
only at isolated parameter values. The goal of this paper
is to present a theory that accounts for the observations
of Nichols and Wiesenfeld [1].

The problem considered here is part of a larger effort
to apply dynamical systems theory to the analysis of
Josephson arrays [1-10]. Following previous authors, we
restrict attention to the most symmetric possible case: a
series array of identical junctions in which each junction
is coupled equally to all the others. At first this “global
coupling” may seem artificial, but it actually follows
quite naturally from Kirchhoff’s laws. In fact, global
coupling also arises in several other physical systems, in-
cluding multimode lasers with an intracavity crystal
[11-13], electronic oscillator circuits [14], and laser ar-
rays [15].

Each of these systems may be regarded as a population
of coupled nonlinear oscillators. Such systems can exhib-
it a variety of collective modes, the simplest of which is
the coherent mode where all the oscillations are in phase.
Early studies [2,3] focused on the stability of this mode
because of its importance for technological applications
[16].

More recently, attention has turned to a different kind
of periodic state, variously known as the antiphase state
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[2], rotating wave [14], ponies on a merry-go-round [8,9],
or splay state [5]. The term “splay state” is motivated by
the state’s appearance when plotted on a phasor diagram:
The phases of the oscillators are splayed apart on the unit
circle. To be more precise, the defining property of a
splay state is that all the oscillations have the same wave
form, but are staggered equally in time. Thus if x,(#) is
the state of the kth oscillator, then x, (¢)=X (¢t + kT /N),
for k=1, ..., N, where X is the common wave form, T is
the oscillation period, and N is the number of oscillators.

Splay states were first observed by Hadley and Beasley
[2] in numerical simulations of Josephson arrays. They
have since been detected experimentally in a multimode
laser system [12] and in an electronic oscillator circuit
[14]. Their existence for all N has been proven rigorously
for two particular Josephson arrays [9], and in a model
system of symmetrically coupled phase oscillators [17].

The significance of splay states is that they occur in
vast numbers, if they occur at all; if one splay state exists,
then in fact there are (N —1)! of them, obtained by per-
muting the indices of the oscillators. This explosive pro-
liferation can lead to attractor crowding [18], a
phenomenon in which the array becomes increasingly
sensitive to noise as N grows. On the other hand, the
multiplicity of splay states raises the technologically in-
triguing possibility that they might be used as storage ele-
ments in a dynamic, rewritable memory [19]—assuming,
of course, that the splay states were stable, and that one
could switch reliably among them.

So the natural question becomes: Under what cir-
cumstances are splay states stable? In the first theoretical
attack on this question, Tsang et al. [5] and Swift, Stro-
gatz, and Wiesenfeld [10] studied the simple case of
Josephson arrays with overdamped (zero capacitance)
junctions and a pure resistive load. To their surprise,
they found that the splay states are neutrally stable in all
directions: all the Floquet multipliers [20] lie on the unit
circle. Tsang et al. [5] originally guessed that this highly
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nongeneric property might be related to the system’s
time-reversal symmetry, but then Tsang and Schwartz [7]
gave an example of a nonreversible Josephson array
which nonetheless had neutrally stable splay states. The
neutral stability was not quite as severe as in the reversi-
ble case, but was still peculiarly large: Tsang and
Schwartz [7] reported that all but four of the Floquet
multipliers equal +1 “up to single precision machine ac-
curacy.”

Now Nichols and Wiesenfeld [1] have extended this re-
sult to a much broader class of arrays. In particular, for
arrays of overdamped junctions with various RLC loads,
they once again find that all but four of the Floquet mul-
tipliers equal + 1. They also report careful numerical es-
timates of the four non-neutral Floquet multipliers.

In this paper we present a theory that explains the ori-
gin of the neutral stability. The culprit turns out to be
the pure sinusoidal form of the Josephson current rela-
tion [21]. The lack of higher harmonics leads to a mas-
sive decoupling of the governing dynamical equations, at
least in the neighborhood of the splay state. This effect
has been noticed previously in three model systems
[22-24], and is now seen to occur in realistic models of
Josephson arrays as well.

The theory also quantitatively predicts the values of
the four non-neutral Floquet multipliers. Though based
on the infinite-N limit, the theory is accurate for small N.
For instance, the predicted Floquet multipliers agree with
the numerically computed values to less than 0.1%, even
when N =4.

II. GOVERNING EQUATIONS

We consider the class of arrays shown in Fig. 1. An
RLC load is in parallel with a series array of identical
Josephson junctions. We assume that the junctions are
heavily overdamped, i.e., they have negligible capaci-
tance. (The case of nonzero junction capacitance remains
unsolved. It is more difficult and requires additional
techniques, as we discuss in Sec. V.)

The dynamics of the array are given by Kirchhoff’s
laws and the Josephson relations [2,21]. The equations
are

# déy . dQ _
ko e, k=1,...,N
2er ar Lesindit =1
d’Q  ,d0 0 _# I 99
Ldt2 +Rdt+C 2ej§'1 dt ’

from Kirchhoff’s current law and voltage law, respective-
ly. Here # is Planck’s constant divided by 2, e is the
electron charge, r is the junction resistance, ¢, (¢) is the
phase difference across junction k, I, is the critical
current, Q(¢) is the charge on the capacitor, I, is the dc-
bias current, and L, R, and C are the inductance, resis-
tance, and capacitance of the load, respectively. Note the
permutation symmetry of the equations, as well as the
presence of global coupling in the second equation.

Now we nondimensionalize the system in a way that
yields a nontrivial limit as N — . This scaling [2,3]
differs from the conventional scaling by a factor of NV in

FIG. 1. Circuit schematic for a series array of identical over-
damped Josephson junctions with an RLC load and a dc-current
bias.

the dimensionless versions of L, R, and C. In what fol-
lows, the quantities with an asterisk are dimensionless.
Let

w,=2erl /f, t*=o.t, Q*=0.Q/I, I}=I,/I,,

* @De * £_

rN’ rN’

After substituting these expressions into the governing
equations and dropping the asterisks, we obtain

by +sing, +Q=I,, k=1,...,N, (1

C*=No,rC .

N
LO+RO+CTIQ=~ 5 4, @
i=1
where the overdot denotes differentiation with respect to
dimensionless time.

We want to study the dynamical system (1),(2) in the
large-N limit. The appropriate infinite-dimensional sys-
tem is suggested by an analogy with fluid mechanics. As
N — o, imagine a continuum of oscillators flowing
around the unit circle. The velocity field on the circle is
given by

V(¢,t)=1b—Q"‘Sin¢ ’

from (1). Let p(¢,t) denote the density of oscillators at
phase ¢ at time . Then we can replace the average in (2)
by an integral:

1 N 27 .
~ 24— S T dpt9.00d¢

= [, ~ 0 ~sing1p(4,1)d4 .

Hence (2) becomes
LO+(R+1)0+C™1Q =1b—f02"p(¢,t)sin¢d¢ )

The density p(¢,t) evolves according to the continuity
equation

9 , 3 i

ar T ag (pv)=0,
which expresses ‘“‘conservation of oscillators.” Substitut-
ing for v(¢,?) yields
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9 __ 9 —O —sind1). @)
ot a¢(p[1b Q —sing])

Together (3) and (4) determine the evolution of the
infinite-N system, which has state variables Q, Q, and p.

ITII. SPLAY STATE: EXISTENCE

In the infinite-N limit, a splay state corresponds to a
stationary solution of (3) and (4). This makes sense
intuitively—in the splay state, all the oscillators are
equally staggered in time and move around the circle in
exactly the same way. Therefore, at a macroscopic level,
the flow around the circle is steady and p is independent
of time.

The stationarity of the splay state implies that
dp/dt =0, Q=0, and Q=0. Note that by requiring
Q =0, we are assuming that there actually is a capacitor
in the load, i.e., C# o0, in which case no current passes
through the load in steady state. If instead there were no
capacitor, the stationary solution would have I=const,
where I is the current passing through the load. The re-
sults in this case will be discussed at the end of Sec. IV.

The density for the stationary solution is given by

v

P:po<¢>>=m :

where the normalization constant

v=02m) IE—1)1"?

is determined by [ (z)"po(qﬁ)d ¢=1. (Here and from now

on, we assume that I, > 1; otherwise the oscillators get
stuck at some point on the circle and the splay state does
not exist.) The constant charge on the capacitor is
Q =Q,, where Q, satisfies

— 2m .
C7'Qo=1I,— [ "po(¢)singds ,

from (3). After substituting for p, and evaluating the in-
tegral, we find Q,=C (I2—1)'72.

IV. SPLAY STATE: LINEAR STABILITY

This section contains the main part of the analysis. In
Sec. IV A we linearize (3),(4) about the stationary density
po- Then in Sec. IVB we find the eigenvalues of the
linearized system. We claim that these eigenvalues are
intimately related to the Floquet exponents and multi-
pliers [20] about the splay state of (1),(2). Unfortunately
we have not been able to prove a rigorous result in this
direction, so we merely state the idea as a conjecture.

Conjecture. In the limit N — oo, the Floquet exponents
about the splay state of (1),(2) converge to {A;}. Here A;
is an eigenvalue of the infinite-dimensional system (3),(4)
linearized about the stationary density p,. The corre-
sponding Floquet multipliers converge to {exp(A;T)},
where T =2m(I}—1)"!/? is the period of the splay state
as N — 0.

The intuition here is that the Floquet exponents for the
finite-dimensional problem play the same role as the ei-

genvalues for the infinite-dimensional problem; both
govern the evolution of infinitesimal perturbations about
the splay state. In any case, the numerical evidence for
the conjecture is compelling, as shown in Sec. IV C.

A. Linearized system

First we consider the linear stability of the stationary

state (Q’Q,P):(QO,pro)- Let Q:Q0+q’ Q:q’
p=potm. Then the linearization of (3),(4) is

Li+(R +1)q+C_1q=—fozﬂn(¢,t)sin¢d¢, (5)

an __ 0 . 4po

at 36 (mvy)+4 ¢ (6)
where

v0(¢)=Ib—Sin¢

is the velocity corresponding to the splay state. To ana-
lyze this linear system, a natural strategy would be to ex-
press 1(¢,t) as a Fourier series in ¢, and then derive a set
of amplitude equations. Golomb er al. [23] recently did
such a calculation for a closely related system. They in-
troduced two clever changes of variables that make the
calculation easier. In what follows, we adopt the nota-
tion of Appendix B in Golomb et al. [23].

The first trick is to reparametrize the circle to remove
the angular dependence in the velocity vy(¢). Let

G(g)= O"’po(¢')d¢' .

This is equivalent to the transformation to “natural an-
gles” in Swift, Strogatz, and Wiesenfeld [10]. As ¢ runs
from O to 27, G runs from O to 1. Thus 6=27G (¢) may
be regarded as a new angular variable. It is “natural” in
the following sense: When the system is in the splay
state, each oscillator moves at constant angular velocity
with respect to 6, because

6=27G'(¢)d
=27povo
=21v

=IZ—D'2 .

Furthermore, in this coordinate system the splay state
corresponds to a uniform distribution of oscillators
around the circle.

The second trick is to express 1(¢, t) as follows:

77(¢,t)=p0(¢) am(t)eZ"imG(¢) .

m

!IDMS

o

Note the prefactor py; it will turn out to be useful. Also,
the Fourier series is with respect to the natural angle
2wG (@), rather than ¢ itself. At ¢ =0, the amplitudes a,,
satisfy @,, =a _,,, by reality of 1, and a,=0, by the nor-
malization of p; we will see later that these conditions
hold for all ¢.
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In terms of the new variables, Eq. (5) becomes

Li+(R+1)§¢+C7 g

:_f021rp0(¢) i am(t)ez-rrimG(nﬁ)sin(bd(i) .

This may be written compactly as
Li+(R+1)g+C7g=— 3 fna,, (7)
m=—o0

where f,, is defined by
F= [ o127 Psing dg

Our f,, is a special case of that defined in Golomb et al.
[23], Eq. (B7); here g (¢)=sin¢ in their notation.

Next we rewrite (6). The advantage of the new vari-
ables will now become obvious. We find

< ; dpo 3 - ;
. 27imG (@) — Y 27mimG (¢)
pPo > ape =q v > a,e
ma—— d¢ | ==, "
27wimG (¢

since NVo=pPoVoD mam€ ), and pyvo=v. Carrying
out the differentiation on the right-hand side and recal-
ling that dG /d ¢ =p,, we obtain

- - i . 4po
po 3 anelmI=g-1 " —vpg

m=—o0
had .
X 3 2mwima,,e*™meP
m= — o

To find the amplitude equations, we multiply both sides

by e ~27"G(#) and integrate from O to 2, using the ortho-
gonality relation
0, k+#0
27 2mikG($) dé= 1.
[T drdg= 11 1 o
[which follows from the usual relation

[ore*0do=2m}8, , after the substitution 8=27G(4)].
The resulting amplitude equations are

a,=gb, —2mivna,, , (8)

where b, is defined by

_ 2 9po —27inG(4)
b, fo 15 dé

as in Golomb et al. [23], Eq. (B6).

B. Eigenvalues

Now we study the eigenvalues of (7),(8). The problem
is analytically tractable, because of the identity

b,=0, for all |n|7#1,

as observed by Golomb et al. [23]. Thus Egs. (7) and (8)
reduce to

a, = —2mivna,, n¥F=*l, (9a)
a,=b,q—2miva, , (9b)
a_y=b_;q+2miva_, , (9c)
Li+(R+1Dg+C7lg=— 3 f.a, . (9d)

We make the following observations about (9).

(i) Equation (9a) shows that the evolution of the higher
harmonics a,, |n|>1, is independent of the rest of the
system. Strogatz and Mirollo [22] and Golomb et al.
[23] found a similar decoupling of higher harmonics for
two other systems of oscillators. In each case, the decou-
pling stems from the pure sinusoidal form of the non-
linearity in the original system. Here, the identity b, =0
for all [n|#1 can ultimately be traced back to the sing
terms in Egs. (3),(4).

(i) Equation (9b) and
b,=b_,and @, =a_,.

(iii) ay(t)=0 since d,=0 and a,(0)=0, as mentioned
earlier.

To find the eigenvalues and eigenvectors of (9), we seek
solutions of the form a,(t)=a,(0)e*, g(t)=q(0)e™.
Then (9) becomes

(9c) are conjugates, since

Aa, = —2mivna,, nF=*xl

Aa,=Ab,q —2miva, ,
Aa_;=Ab_,q +2miva_, ,

MLg+MR+1)g+C 7 lg=— 3 fna,
m=—o0
where now g,a, denote initial values of those variables.
There are two cases to consider.

Case 1: Pure imaginary eigenvalues

Because of the decoupling of the higher harmonics, one
kind of eigenvector can be seen immediately. For any
fixed |k|> 1, pick a; =1, and a,=0 for all n5*+1 and
n#k. Then all the higher-harmonic equations in (10) are
satisfied automatically, except for the case n =k, which
yields

A= —2mivk .

To check that this is actually an eigenvalue, we need to
verify that the remaining equations in (10) can be solved
uniquely, given this value of A. Those remaining equa-
tions are

Aa,=Ab,q —2mwiva, ,

Aa_,=Ab_,q +2miva_,

AMLg+AMR +1)g+C 7 lg=—[fia,+f_a_+fi].
We have three linear equations in three unknowns: a,,
a_,, and q. Generically, this system will have a unique

solution. The only exception would be if the determinant
of the system above were zero; this would require a cer-
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tain resonance condition involving L, R, C, and I,. Ex-
cept at such special parameter values, the system has a
unique solution, and so A= —2mivk is indeed an eigenval-
ue for each integer |k| > 1.

Hence we have an infinite number of distinct, pure
imaginary eigenvalues. These eigenvalues account for the
enormous neutral stability observed numerically by Ni-
chols and Wiesenfeld. To see why, recall our conjecture
that each A corresponds to a Floquet multiplier p=e*7.
Here T =2m(I?—1)"'2=1/v is the period of the splay
state. Thus we obtain a simple formula for the Floquet
multipliers:

u= ek/v .
But when A= —2mivk, this reduces to u=e 27k=1,
Thus the neutral stability may be traced back to the
decoupling of the higher harmonics.

Case 2: Nontrivial eigenvalues

Now suppose that a,, =0 for all n5=+1; in other words,
the perturbation does not involve any higher harmonics.
Then (10) becomes

(11a)
(11b)
(11¢)

Aa,=Ab,q —2miva, ,
Aa_,=Ab_,q +2miva_, ,
AMLg+MR+1)g+C lg=—[fia,+f_ja_,].

To derive the characteristic equation for A, we convert
(11) to a system of equations with purely real coefficients.
Let

a,=A+iB, a_,=A—iB ,
b,=K +iD, b_,=K —iD ,
fi=v+id, f_,=y—id.

(Recall that the constants b ; and f ., have been defined
earlier in terms of certain integrals; they will be evaluated
explicitly later.) Adding and subtracting Eqgs. (11a) and
(11b) yields

AA=AKq +27vB ,
AB=ADq—27mvA .

Next we break the second-degree equation (11c) into two
first-degree equations by introducing a new variable

I=Aq
in terms of which (11c) becomes

ALI+(R+1I+C 7 lg=—2[y4—8B].

In matrix form, these four equations imply

A —2mv —AK 0 A 0
20 A —AD 0 B| |o
0 o0 A -1 qa|” |o (12)
2y —286 C' AL+R+1||I]| |0

The eigenvalues satisfy the characteristic equation

det(M)=0, where M denotes the matrix in (12).

Before computing this determinant, we write down the
explicit values of the constants K, D, 8, ¥, using the iden-
tities in Golomb et al. [23], Appendix B. Equation (B15)

in Golomb et al. [23] gives
_ e —27iG
b

where
276G =tan"'[1/(I}—1)'7?] .

(In translating from Golomb et al. [23], we have replaced

their @ and 4 with I, and —1, respectively.) Hence
2_1\1/2_;
—omi__ (Ib 1) l
e =2 7
I,

and therefore
1 -1
k=%, P -2
To find ¥, 8, we use Eq. (B19) in Golomb et al. [23]:
fi =ie2”i6(1§—- 1 )I/Z[Ib —(I,f— 1 )1/2] .
After simplification this yields
_oll,—w) ¥ I, — )
I, 7’ I, ’

/y:

where for notational convenience we have introduced the
quantity

0=(I;—=1D'?,

which is the angular frequency of the splay state.

Finally, after substituting the expressions for K, D, &,
and y into (12) and using Mathematica to compute the
determinant, we obtain the following equation for the ei-
genvalues:

LA*+(R + 1A+ (C 1+ Lw?)A?
+(,0+Ro*)A+0’C~'=0. (13)

Equation (13) is one of the main results of this paper. It
explains why there are precisely four nontrivial Floquet
multipliers. [Of course, if L =0, then (13) predicts there
will be only three nontrivial multipliers.]

C. Numerical illustration

For particular choices of the parameters, we can solve
(13) numerically and then compare the predicted multi-
pliers pu=e”’* with those reported by Nichols and
Wiesenfeld [1]. Actually, Nichols and Wiesenfeld report-
ed the magnitude of the multipliers; our theory predicts

ReA+i ImA
v

ReA

lul= |exp

Also, Nichols and Wiesenfeld [1] used a slightly different
scaling from ours; they did not include any factors of N
in the load parameters. To convert their dimensionless
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parameters to ours, let L, R, C denote the parameters
used by Nichols and Wiesenfeld [1]. Then

R=R/N, L=L/N, C=NC .

For example, consider Nichols and Wiesenfeld [1], case
I, with N=4, I,=1.9, R=0, L=2, C=0.125. In our
notation,

N=4, I,=1.9, R=0, L=0.5, C=0.5.
Then (13) becomes

0.5A*+A%+3.305A%+3.069 541 +5.22=0.
The roots are

A1,=—0.964259...+(1.57659...)i ,

A3 4=—0.0357411...+(1.74798...)i .

Since v =(27) " W(I2—1)/2=0.257123. . ., the predicted
multipliers have magnitudes

_ —0.964259. .. | _
1ol =exp | S0 | =0.0235134. .,
_ —0.0357411... | _
3 4l =exp 0257123 0.870225. . . .

For comparison, the values measured by Nichols and
Wiesenfeld [1] are  [u;,/=0.0235149... and
Lu,3,4| =0.870140. ... Hence there is agreement to at
least three significant figures. For N =10, the agreement
improves to at least four significant figures. This level of
agreement is typical of all cases we have examined.

D. Stability criterion

By applying the Routh-Hurwitz criteria [25] to (13), we
can obtain a necessary and sufficient condition for the
nontrivial eigenvalues to lie in the left half plane ReA <O.
If this condition is violated, the splay state is not merely
neutrally stable, but genuinely unstable. Then attractor
crowding [18] among the (N —1)! distinct splay states
would no longer be an issue, since they would no longer
be even neutrally stable. On the other hand, such insta-
bility would eliminate the technologically interesting pos-
sibilities [19] of using such an array as a dynamic
memory or “multiswitch.”

According to the Routh-Hurwitz criteria [25], all the
roots of the fourth-degree polynomial a,A*+a;A>
+a,A*+a,A+ay lie in the left half plane if and only if
the following quantities A; are all positive:

Ao=a4, A,=a3, A2=a3a2—'a4a1 ,
— 2 2
A y=azo,a, —agas—auaq ,

A4=a:;(azalao'—a:;a%)—a%aoa“.

From (13), we have
a4:L’ a3=R +1y a2=C_1+LCl)2,

a,=I,0+Rw? ay=w?C7!'.

Thus Ay>0 and A;>0 automatically. The condition
A, >0 yields

R +1
wLC +ow.

The conditions A;>0 and A,> 0 turn out to be the same:
They are both equivalent to

R+1
oLC

Notice that this condition is stricter than the condition
A, >0, so it alone is the necessary and sufficient condition
we seek. Hence all four nontrivial A’s satisfy ReA <0 if
and only if (14) holds.

To clarify the implications of (14), consider the graphi-
cal analysis shown in Fig. 2. By definition of w, the bias
current is constrained to lie on the operating curve
I,=(1+0*)'% Let

p=(R +1)/LC.

I, <

I, < Ro . (14)

Then according to (14), the splay state is neutrally stable
if I, lies below u/wo—Rw, and is unstable otherwise.
Hence the splay state becomes unstable when I, exceeds
a threshold current I ., defined by the intersection of
the curves in Fig. 2. (On the other hand, I, cannot be too
small, since we require I, > 1 just for a splay state to ex-
ist.)

To find I, explicitly, square both sides of
u/o—Ro=(1+w?)'"?, solve the resulting quadratic
equation for w?, and choose the appropriate root. The re-
sult is
172
1+2Ru—(1+4Ru+4u*)'"?

Tpren = |1+
thresh 2(R2_1)

(15)

The negative square root inside is the right choice, be-
cause then I, . remains finite as R — 1, in accordance
with Fig. 2; the other root blows up as R — 1, and is of no
physical significance.

Iy

: 12
Sy =(1+0?%)

unstable

neutrally
stable

Il
T

@thresh

FIG. 2. Graphical analysis of stability condition (14). The
splay state is neutrally stable for 1<I, <Iy. (thick line) and

unstable for Ij, > I,; ..., (dotted line).
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Equation (15) is a bit opaque; it is easier to draw con-
clusions from Fig. 2. For instance, suppose we want to
raise the threshold of instability. Then the curve
pu/o—Ro in Fig. 2 must move up. This can be achieved
in various ways: For instance, we could increase
p#=(R +1)/LC by increasing R or decreasing LC. In the
limit LC <<1, we have p>>1; then (15) reduces to
Ipresh =(LC)™1/2>> 1. In this case it is easy to satisfy the
stability condition.

In summary, the splay state is neutrally stable if
1 <Ij, <I en; unstable if I, > I,y . ; and does not exist if

I, <1. Neutral stability is promoted by large values of R
or small values of LC.

As a final caveat, we reiterate that all of the preceding
analysis assumes that the load actually has a capacitance
(C5= o). Otherwise in the stationary state there is a con-
stant current passing through the load, rather than a con-
stant charge on the capacitor. This case requires a
separate treatment, because the stationary density py(¢)
is qualitatively different from that studied here. No addi-
tional techniques are required; we leave the details for the
interested reader. The conclusions are that for I, > 1 the
splay state is always unstable for L0 and is always neu-
trally stable for L =0. This last case, in which the load is
purely resistive, has been considered before—see Tsang
et al. [5] and Swift, Strogatz, and Wiesenfeld [10].

V. DISCUSSION

Our analysis accounts for the puzzling results of Ni-
chols and Wiesenfeld [1]. The enormous degree of neu-
tral stability is due to the decoupling of the higher har-
monics in Eq. (9); that decoupling is itself a manifestation
of the pure sinusoidal form of the Josephson current rela-
tion. Our theory also gives accurate predictions of the
nontrivial Floquet multipliers, and explains why there are
precisely four of them.

Related phenomena, including extensive neutral stabili-
ty, have been seen previously in studies of various model
systems with permutation symmetry and sinusoidal non-
linearities [22-24]. In particular, Golomb et al. [23]
showed numerically that the neutral stability could be
eliminated by including higher harmonics in the non-
linearities.

On the other hand, there must be more to this story —
permutation symmetry and sinusoidal nonlinearity alone
do not imply the neutral stability of splay states. As a

counterexample, consider Josephson arrays where the in-
dividual junctions have nonzero capacitance, i.e., the
McCumber parameter >0 [21], and the load is purely
capacitive. For this case, Nichols and Wiesenfeld have
found numerically that the splay state becomes linearly
stable, with exponential contraction in all directions
transverse to the orbit. This stabilization cannot be as-
cribed to a change in the symmetry or the nonlinearity;
some other effects are at work here, and await under-
standing.

The analysis of arrays with 8> 0 is going to require ad-
ditional methods. The state of a junction is now given by
two numbers, a phase ¢ and an angular velocity ¢ =w. In
the infinite-N limit, the appropriate density is p(¢,w,?),
which represents a density on a cylinder. In the station-
ary state, all the junctions execute identical limit-cycle
oscillations on this cylinder, and are uniformly staggered
in time around the limit cycle. Hence p(¢,w,t) collapses
to a singular density supported on this limit cycle. The
linearized system is therefore more subtle to analyze, and
involves ‘‘generalized functions.” Another difficulty is
that the basic limit cycle cannot be written down explicit-
ly. Work on this case is in progress.

There are also several unanswered questions about the
analytical approach introduced in this paper. The under-
lying philosophy is that it is always easier to find fixed
points and their eigenvalues than it is to find periodic or-
bits and their Floquet exponents. For the Josephson ar-
ray studied here, the Floquet exponents of a finite-N sys-
tem turned out to be closely approximated by the eigen-
values of an infinite-NV system. Because of this relation-
ship, we were in the unusual position of being able to ob-
tain analytical information about all the Floquet multi-
pliers. But we have offered no proof that the method
works (although it clearly does). Can the method be
proven to work in more general circumstances? And can
one apply it to other globally coupled systems, such as
laser arrays, electronic oscillator circuits, or multimode
lasers?
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